Proof of Jacobi identity in generalized quantum dynamics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of Jacobi identity in generalized quantum dynamics

We prove that the Jacobi identity for the generalized Poisson bracket is satisfied in the generalization of Heisenberg picture quantum mechanics recently proposed by one of us (SLA). The identity holds for any combination of fermionic and bosonic fields, and requires no assumptions about their mutual commutativity. ∗ Submitted to Nuclear Physics B

متن کامل

On Quantum Jacobi Identity

In this paper we present our variant of quantum antisymmetry and quantum Jacobi identity.

متن کامل

Jacobi identity for Poisson brackets : a simple proof

In view of the recent interest in a short proof of the Jacobi identity for the Poisson-brackets, we provide an alternative simple proof for the same. Our derivation is based on the validity of the Leibnitz rule in the context of dynamical evolution.

متن کامل

Jacobi Identity for Poisson Brackets: A Concise Proof

In view of the recent interest in a short proof of the Jacobi identity for the Poisson-brackets, we provide an alternative simple proof for the same. Our derivation is based on the validity of the Leibnitz rule in the context of dynamical evolution. PACS number(s): 45.20.-d

متن کامل

Generalized Hamilton-Jacobi equations for nonholonomic dynamics

Employing a suitable nonlinear Lagrange functional, we derive generalized Hamilton-Jacobi equations for dynamical systems subject to linear velocity constraints. As long as a solution of the generalized Hamilton-Jacobi equation exists, the action is actually minimized (not just extremized). PACS numbers: 45.20.Jj, 45.10.Db Running Title: Nonholonomic dynamics 1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 1994

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.530651